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Abstract
We consider an ordinary differential reduction of the gas-dynamical equations
proposed by Ovsiannikov and Dyson, representing a tri-axial ellipsoidal gas
cloud rotating as it expands into the vacuum. For a monatomic gas (γ = 5

3 )

without vorticity, the system has the Painlevé property and is integrable, at
least in cases of rotation around a fixed axis. We present preliminary results
concerning fully general states of rotation.

PACS numbers: 0570, 0230H, 0230I, 0220

1. Introduction

This paper deals with the ordinary differential reduction of the equations of gas dynamics,
first considered by Ovsiannikov (1956) and by Dyson (1968), under the additional restricting
assumptions of an ideal monatomic gas (with adiabatic index γ = 5

3 ) flowing without vorticity.
The governing equations then assume the form:

div �v = −1

(γ − 1)

d

dt
ln Te (1.1a)

∂t �v = Te
�∇S − �∇

( �v2

2
+

γ Te

γ − 1

)
(1.1b)

∂tS + �v · �∇S = 0 (1.1c)

which are the laws of conservation of mass, momentum and entropy. Te is the temperature,
normalized in such a way that the specific enthalpyH = γ Te/(γ − 1), �v = d�x/dt the velocity,
S the entropy and d/dt represents the comoving derivative ∂t + �v · �∇.

Ovsiannikov and Dyson remarked that this system admits an ordinary differential equation
(ODE) reduction where S is a quadratic function of Cartesian coordinates �x, �v is a linear
function of �x (with coefficients which are a function of time t) and Te is a function of time
only. Since the density ρ is given by

ln ρ = 1

(γ − 1)
ln Te − S (1.2)
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for an ideal gas, this ODE reduction describes an ellipsoidal gas cloud with a Gaussian density
profile, expanding and rotating, with a linear velocity distribution:

�v = V [�x]. (1.3)

As the vorticity is assumed to vanish, the 3 × 3 matrix V is symmetric.
The ODE reduction may also be interpreted as representing Hamiltonian motion of a

point mass in nine-dimensional Euclidean space (Dyson 1968), in the potential Te/(γ − 1),
the specific internal energy of the fluid.

In a recent paper (Gaffet 2000) I have considered the restricted case where V is block-
diagonal, in which the gas cloud is rotating around a principal axis of fixed direction, and
I have shown Liouville integrability of the equivalent Hamiltonian motion; furthermore, the
corresponding general solution was shown to admit expansions of Kowalevski–Painlevé type
(Kowalevski 1889, 1890, Painlevé 1902, Ince 1956) in terms of an independent variable u

which is distinct from time:

u =
∫

Te(t) dt. (1.4)

In this paper I will try to generalize these results to fully arbitrary states of rotation, where
the matrix V is no longer block-diagonal. In particular, I will give a generalization of the
new integral of the motion I6 obtained in my earlier work, and present a candidate for the last
missing integral.

2. The model

The model was originally described by Ovsiannikov and by Dyson in the Lagrangian formalism,
where the independent variables are the Lagrangian coordinates �α, characterized by the
property

d�α
dt

= 0. (2.1)

In a Eulerian formalism the Lagrangian variables may be retrieved in the following way:
a matrix F(t) is introduced, which satisfies the equation

Ḟ = VF (2.2)

(where a dot symbolizes d/dt). We have

ln(det F) =
∫

Tr(V ) dt (2.3)

so that, starting from a regular initial value of F , F remains regular.
It is easy to show that the column vector

[�α] = F−1[�x] (2.4)

constitutes a set of Lagrangian coordinates. Equation (2.4) expresses the fact that Cartesian
and Lagrangian coordinates are linearly related (which was the basis of the original derivations
of the model). It can be shown that the equations of gas dynamics (1.1) entail the following
equation of motion for F :

FT F̈ = Te (2.5)
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where the lower index T denotes transposition. As a consequence of the continuity
equation (1.1a), the temperature Te is related to the determinant of F :

det F = 1/T 3/2
e

(
using γ = 5

3

)
. (2.6)

It is worth noting that, whenever F solves (2.5) and (2.6), FT constitutes another solution, that
property is known as the duality principle of Dedekind (1860).

Another immediate consequence of (2.5) is the constancy of the two matrices J and K:

J = FḞT − ḞFT

K = FT Ḟ − ḞT F
(2.7)

which represent angular momentum and vorticity, respectively. (In this paper, K will be taken
to be zero.)

It was also noted by Dyson that (2.5) may be rewritten in the form

F̈ij +
1

(γ − 1)

∂Te

∂Fij

= 0 (2.8)

(where Te, as a function of F , is defined by equation (2.6)), which clearly represents the
Hamiltonian motion in the nine-dimensional Euclidean space of coordinatesFij , in the potential
Te/(γ − 1). There follows the law of conservation of energy:

E = 1
2 Tr(Ḟ ḞT ) +

Te

(γ − 1)
. (2.9)

3. The symmetry group: O(3) × O(3)

The most general 3 × 3 matrix F may be decomposed in the form

F = O1DO2 (3.1)

where D is diagonal (D = (D1,D2,D3)), and O1,O2 are two orthogonal matrices, operating
in the spaces of Cartesian and Lagrangian coordinates, respectively. The diagonal part may be
found, for example, through diagonalization of the symmetric matrix FFT :

FFT = O1D
2O1T . (3.2)

Clearly, together with F , �1F�2 also solves the equations of motion, �1 and �2 being
arbitrary (constant) orthogonal matrices: the system presents two independent symmetry
groups O(3), whose product is isomorphic to O(4).

Equation (3.1) may be viewed as a transformation to new coordinates D1,D2,D3,
supplemented by the six coordinates of O(3) × O(3). The latter will not appear explicitly in
the equations, provided that we use the angular velocities ‘in the moving frame’, defined by

Ȯ1 = −O1ω

Ȯ2 = ϕO2.
(3.3)

Here we use the convention that ω, ϕ, etc are the antisymmetric matrices dual to the 3-vectors
�ω, �ϕ, etc

ωij = 1
2εijkωk. (3.4)

The representations of Ḟ and F̈ in the moving frame read

Ḟ = O1HO2 (3.5a)

F̈ = O1TeD
−1O2 (3.5b)
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and the equation of motion (2.5) thus becomes the system

Ḋ + (Dϕ − ωD) = H (3.6a)

Ḣ + (Hϕ − ωH) = TeD
−1 (3.6b)

which is equivalent to Dyson’s equation (35).
The angular momenta j , k in the moving frame:

j = O1T JO1

k = O2KO2T

(3.7)

are given explicitly by

j = D2ω + ωD2 − 2DϕD

k = D2ϕ + ϕD2 − 2DωD.
(3.8)

Their duals, �j and �k, satisfy equations of motion which express conservation of J and K:

d �j
dt

= �j ∧ �ω
d�k
dt

= �k ∧ �ϕ
(3.9)

that constitutes the off-diagonal part of the equation of motion (3.6).
The kinetic energy, in the moving frame, is expressed by

�v2 = Tr(Ḟ ḞT ) = Tr(Ḋ2 + 2ωDϕD − (ω2 + ϕ2)D2)

= �̇D2 + �j · �ω + �k · �ϕ (3.10)

(where �D is the vector with components D1,D2,D3). If, following Dyson, one rewrites the
last two terms in a manifestly O(4) invariant way, the analogy with a four-dimensional top
becomes apparent.

The relations (3.8) between angular momenta and angular velocities, read explicitly

j1 = ω1(D
2
2 + D2

3) − 2ϕ1D2D3

k1 = −2ω1D2D3 + ϕ1(D
2
2 + D2

3)
(3.11)

together with the equations deducible by circular permutation; and, when there is no vorticity,
they simplify to

j1

ω1
= (D2

2 − D2
3)

2

(D2
2 + D2

3)
. (3.12)

Finally, the diagonal part of equation (3.6), which is the only part where the dynamical effect
of pressure manifests itself, reads

D̈1 + [(ω2
1 + ϕ2

1) − ( �ω2 + �ϕ2)]D1 + 2ω3ϕ3D2 + 2ω2ϕ2D3 = Te

D1
(3.13)

(and the equations deducible by permutation).
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4. The symmetry group: (T ∗)

It has been shown by Ovsiannikov (1982) and by Gaffet (1981, 1983, 1996) that the most
general flow of a monatomic gas (of adiabatic index γ = 5

3 ) presents a discrete symmetry:

t∗ = −1/t

�x∗ = �x/t
�v∗ = (�vt − �x)
T ∗
e = t2Te.

(4.1)

This gives rise to an SL(2) group of Möbius transformations of time, denoted by (T ∗), with
generators G1,G2,G3:

G1 = ∂

∂t

G2 = 2t
∂

∂t
+ xi

∂

∂xi
− vi

∂

∂vi
− 2Te

∂

∂Te

G3 = t2 ∂

∂t
+ txi

∂

∂xi
− v∗

i

∂

∂vi
− 2tTe

∂

∂Te

.

(4.2)

An immediate consequence of the symmetry is that the polar moment of inertia of an isolated
mass of monatomic gas, must be a quadratic function of time. In the present problem, the
moment of inertia is just R2 = Tr(FFT ) = Tr(D2), so that one can write

R2/2 = Et2 + $t + E∗ (4.3)

where E (the energy), $ and E∗ are three constants; this result was first derived by Anisimov
and Lysikov (1970). Thus the radial part (R(t)) of the equivalent Hamiltonian motion is
known independently, and ought to be removed. This is achieved through the reduction of the
nine-dimensional Euclidean motion to a new Hamiltonian motion on the eight-dimensional
unit sphere R2 = 1, by means of the transformation, which may be viewed as a generalized
version of equation (4.1):

ts =
∫

dt

R2

�xs = �x
R

Tes = R2Te.

(4.4)

The result is Hamiltonian motion on the unit sphere, in a potential Tes/(γ − 1), and it is (T ∗)
invariant. The new value Ê of the energy is the (T ∗) invariant that may be constructed from
E,E∗ and $, and is the discriminant of equation (4.3):

2Ê = 4EE∗ − $2. (4.5)

This value of Ê may be physically interpreted as resulting from the removal from E of the
kinetic energy Ṙ2/2 of radial motion, followed by a rescaling of E by a factor dt/dts = R2,
in view of the fact that the function R(t) satisfies the differential equation:

Ê

R2
= E − Ṙ2

2
. (4.6)
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Let us now rewrite the complete set of equations in a (T ∗) invariant way; for reasons that
will become apparent later, we shall use the Eulerian formalism, based on the matrix V , rather
than the Lagrangian one (based on F ).

The essential result is that a (T ∗) invariant matrix (denoted by Ṽs) may be derived from
V by first taking its traceless part Ṽ (called the ‘deformation tensor’ in fluid dynamics), then
rescaling it by a factor Te:

V = Ṽ + S/3 (S = Tr(V ))

Ṽs = Ṽ /Te.
(4.7)

The equation of motion for V :

V̇ + V 2 = O1TeD
−2O1T (4.8)

gives rise to the following one for Ṽs :

dṼs

du
+ Ṽ 2

s − 1
3 Tr

(
Ṽ 2
s

) = O1D
−2
s O1T − 1

3 Tr
(
D−2

s

)
(4.9)

where

Ds = D
√
Te. (4.10)

Transforming to the moving frame by means of

Ṽs = O1vsO1T (4.11)

the equation of motion becomes

dvs
du

+ v2
s − 1

3 Tr
(
v2
s

) = [ωs, vs] + D−2
s − 1

3 Tr
(
D−2

s

)
(4.12)

where

ωs = ω

Te

(4.13)

is determined (see equations (3.5a) and (3.6a)) by the off-diagonal elements of vs and by Ds ,

ωs12 = vs12

(
D2

s1 + D2
s2

)
(
D2

s1 − D2
s2

) (and circular permutation). (4.14)

The diagonal elements of vs determine the evolution of Ds :

d

du
ln Ds1 = vs11 (and circular permutation). (4.15)

5. Some integrals of hyperspherical geodesic motion

The aim of this paper is the determination of new integrals of the motion, in view of establishing
the Liouville integrability of our system. As we are dealing with Hamiltonian motion on the
8-sphere, eight commuting integrals should be needed, while six are already known:

Ê, �J 2, J3 and the vanishing K1,K2,K3.

Thus two missing integrals remain to be found.
We start with the observation that the pressure force term (the traceless part of D−2

s ) in
equation (4.12) is of degree zero in the velocities, or momenta, whereas the rest of the equation
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(which merely describes geodesic motion) is quadratic. As a result, the terms of highest degree
(in the momenta) in any integral of the motion, must be integrals of geodesic motion. This is
the motivation for the following study of hyperspherical free motion, which is described by
either one of the equations:

F̈ = 0 (5.1)

V̇ + V 2 = 0 (5.2)

dṼs

du
+ Ṽ 2

s − 1
3 Tr

(
Ṽ 2
s

) = 0 (5.3)

dvs
du

+ v2
s − 1

3 Tr
(
v2
s

) = [ωs, vs]. (5.4)

The integrals of free motion are, of course: Ḟ and Fij Ḟkl − ḞijFkl , i.e. the difference of tensor
products F × Ḟ − Ḟ ×F ; but only special combinations of them, such as J = (F ḞT − ḞFT )

and K , are relevant to the present problem.
Let us start with the simplest variable, the rescaled temperature: Tes = R2Te = Tr

(
D2

s

)
,

denoted by X0 for convenience in what follows, and differentiate it several times in sequence,
the effect of pressure forces being neglected: this gives rise to a closed differential system of
five equations for five unknowns:

dX0

du
= 2X1 (5.5a)

dX1

du
= X2 − 2

3TX0 (5.5b)

dX2

du
= − 4

3TX1 (5.5c)

dT

du
= 3P (5.5d)

dP

du
= − 2

3T
2 (5.5e)

where the auxiliary variables X1, X2, T , P may be identified with

Xn = Tr
(
Dsv

n
s Ds

)
(n = 0, 1, 2)

T = − 1
2 Tr

(
v2
s

)
P = det(vs).

(5.6)

T and P are, in fact, the characteristic coefficients of vs :

v3
s + T vs − P = 0. (5.7)

The above system presents several integrals of the motion, among which the energy

2Ê = X0X2 − X2
1 (5.8)

(which, in the present case, is of course purely kinetic energy). We also remark that the last
two equations, equations (5.5d) and (5.5e), themselves constitute a closed sub-system, which
admits the first integral (of the sixth degree in the momenta):

I 6
6 = 27P 2 + 4T 3 (5.9)
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where I 6
6 is precisely the discriminant of the characteristic equation (5.7). As it turns out, it

constitutes the highest degree term (in the momenta) of a new integral of the motion of the
complete system, including the effect of thermal pressure. It generalizes our earlier result
(Gaffet 2000), which was obtained under the restricting assumption of rotation around a fixed
principal axis, i.e. the case where F is block-diagonal.

To narrow down the search for the last missing integral, we observe that it should always
vanish in block-diagonal cases, as those cases have not been found to be super-integrable. This
leads us to consideration of the 3-vector:

�A = �J ∧ Ṽs

[ �J ]
(5.10)

where Ṽs

[ �J ]
is the 3-vector with components ṼsikJk: the vector �A obviously vanishes in

block-diagonal cases; in addition, it gives rise to an integral of free motion, as we now show.
Differentiation of �A (using the expression (5.3) of dṼs/du) gives

d �A
du

= �J ∧ dṼs

du

[ �J ] = − �J ∧ Ṽ 2
s

[ �J ]
(5.11)

and, by further differentiation

d2 �A
du2

= 2 �J ∧ Ṽs

[
Ṽ 2
s − 1

3 Tr
(
Ṽ 2
s

)][ �J ]
. (5.12)

As Ṽs and vs share the same characteristic equation (5.7), this shows that d2 �A/du2 is parallel
to �A, so that ( �A∧ d �A/du) is an integral of free motion, vanishing in block-diagonal cases, and
of degree seven in the momenta.

However, it is easy to show that ( �A ∧ d �A/du) is parallel to �J :(
�A ∧ d �A

du

)
= − �J ( �V0, �V1, �V2

)

where �Vn ≡ Ṽ n
s

[ �J ]
(n = 0, 1, 2; note, in particular, that �V0 ≡ �J ). Thus the constancy of

�A ∧ d �A/du merely reflects the fact that the triple product
( �V0, �V1, �V2

)
is a constant.

6. The last two integrals

We have already noted that the integrals of motion of the complete system, including the
pressure forces, must have an integral of free motion for the highest degree term. Two such
integrals have been found in the preceding section: I 6

6 and the triple product ( �V0, �V1, �V2).
The essential point is that, from knowledge of these terms, the terms of lower degree may be
deduced through an over-determined integration process that may be solved by quadratures.
By this method we have been able to determine the fourth-degree term I 4

6 , and the second
degree one I 2

6 , thus obtaining the exact integral whose highest-degree term is I 6
6 (there being

no term of zero degree).
The existence of this new integral, together with our earlier results for the block-diagonal

case, strongly suggests that the system under study is completely integrable; Liouville
integrability requires one and only one additional integral, L say, vanishing in block-diagonal
cases. There seems to be no other choice than

( �V0, �V1, �V2
)

as the leading term of L, which is
thus predicted to be of degree six in the momenta.

Note added in proof. There is in fact another possibility, owing to the presence of a partial symmetry which changes
D5 to its inverse, while preserving Vs . To the triple product ( �V0, �V1, �V2) corresponds by symmetry another triple
product, which turns out to be the leading term of the last integral L, as will be shown in a forthcoming publication.
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